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E X A C T  S O L U T I O N S  OF T H E  O N E - D I M E N S I O N A L  

R U S S O - S M E R E K A  K I N E T I C  E Q U A T I O N  

A . A .  Chesnokov  UDC 539.591+517.948 

We obtain new classes of invariant solutions of the integrodifferential equations describing the 
propagation of nonlinear concentration waves in a rarefied bubbly fluid. For all the solutions 
obtained, trajectories of particle motion in phase space are calculated. The stability of some 
flows is studied in a linear approximation. In several cases, the construction of solutions 
reduces to an intcgrodifferential equation of the sccond kind. which can be solved by the iteration 
method. 

Kinetic al)l)roaches based on tile statistical description of the interact ion of a large number  of bubbles 
are often used for mo(leling of concentration waves in a flow of a bubbly fluid. A recent result in this area is 
the kinetic model of a rarefied bubbly flow derived by Russo and Snmreka. 

The  I)resent work deals with the construction of exact p~rticular solutions of the one-dimensional 
Russo-Smereka e(tuation by methods of tile classical group analysis. Silnpler submodels determining the 
families of exact solutions are obtained using a group of a(lmissible point transformations, and sotne of these 
submodels are iutegrated. Physical interpretation of the solutions obtained is given. 

1. Mathemat ica l  M o d e l  and Admiss ible  Transformat ions .  Kinetic equations of ,notion of 
1)ubt)les in a fluid were derived and exploited in [1-3] and in a number of  other  works. In [4], Russo and 
Smerelat prol)osc(l all integrodifferential model that descril)es the propagat ion  of concentration waves in a 
rarefied bubl)ly fluid. In this model, the bubbles are rigid massless spheres of tile same radius, the fluid is 
inviscid, incompressil)le, and at rest at infinity, and its flow in the region between the bubbles is irrotational. 
In dimensionless varial)les, the one-dimensional Russo-Smerela~ equation is given by [5] 

+ pj.~f~, = O, j ( t .  x) = / p f  dp. f, + (p j ) f x  (1.1) 

Here t is time, x is the spatial variable, p is the momentum of a bubble, f ( t ,  x, p) is the unknown distribution 
function for the bubbles in phase space, and j ( t .  :r) is the first moment of the distribution function. 

The  model is adequate for the description of real flows of a rarefied bubbly fluid in the case of small 
pressure variations. The condition for a bubbly flow to be rarefied is given by the inequality 

OG 

n( t , x )  = / f ( t . x , p ) d p  < 
0 

1. 

- - 0 0  

We seek solutions of Eq. (1.1) for which this con(lition is satisfied. Teshukov [5] studied the characteristic 
properties of (1.1) and traveling waves and constructed an infinite series of conservation laws. 
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We note that Eq. (1.1) is invariant with respect to the fi)!lowing group of  transformations G4: 1) t ~ = 

t + a ;  2) :r ~ = x + a :  3) r = at and x' = a:r: 4) x ' = a x ,  1)' = a P ,  and f '  = a-~f .  These transformations 
correspond to the Lie algebra of operators L,I: Xl = Or, X2 = Oz, X3 = tot + xOz, and X4 = xO.c +pOp -.fO/.  
The m(~thod developed in [6] allows one to construct invariant solutions of Eq. (1.1) using subalgebras of L4. 

For efficient use of these transformatioas for finding tim invariant solutions, the optimal system of 
subalgebras of the Lie algebra of operators L4 is r using tile algorithm proposed in [7]. The  list of all 

representatives of the optimal system of rank 1 is fi)llows: 1) c~X3 + X4; 2) X~ + Xa: 3) X2 - )23 + Xt;  4) 
X3; 5) X1 + X?.: 6) )22; 7) Xl.  The system is optimal in the sense that  the  classes of solutions obtained 
using its representatives give, up to change of v'arial)les, all possible invariant solutions that  correspond to 

one-parameter subgroups of the transfornmtion group G4. Subsequent cons t ruc t ion  of invariant solutions 
reduces to determination of invariants of the corresponding subalgebnks and the  derivation and integration 

of quotient systems. 
2. S u b m o d e l s .  For all representatives of the optimal system of rank  one, we give sets of basis 

invariants J ,  representations of solutions, and quotient systems E / H  [H(c/Xi) refers to a subalgebra]. 
1. H(aX3 + Xl): J = (t-O+~)x, t-3P, t/~f), and 2 = c~ - t .  The solution is invariant with respect to 

dilation of all variables that (lel~nd on the parameter c~ (c~ # -1 ,  0). This  solution describes a class of 
self  similar (in the restricted sense) motions of the umdium. The solution is wr i t t en  as 

= t-(l+~)x, ~z = t-/3p, f = t-3'g,(f,~z), j = t~m(~).  

The quotient system E / H  is given by 

-iJ<,;' + ( ~  - , , , , -  (1 + l#),~),~/,~ + (,,,~ - /#)~,~/ ,~ = o. ,,;(~) = f ~r162  (2.1) 

The solution is written as 

~2 = :r-lp, 

The quotient system E / H  is given by 

f = .r-%)(t. c2), j = :rm(t). 

,,/,, - ( ~  - ,,,),/, + ( 2 . ,  - ~)~r = o, re(t) = f ~'0 d~. 

The quotient system E / H  is given by 

-,/,  + (~ - m - ~)t/,,r + (m,,r - 1)Fr = O, 

2. H ( X I  + X l): .1 = (x exp ( - t ) ,  p e x p ( - t ) ,  f exp (t)). The solution is invariant  with respect to simul- 

taneous translation in t and dilation of x, p, and f .  The solution is writ ten as 

= : r e x p ( - t ) .  4 = p e x p ( - t ) ,  f = exp(-t)r  j = exp( t )m(~) .  

. 

translation in tile :r direction an(l dilation of t, p. and f .  The, sohition is wr i t t en  as 

,~ = t exp (x), ~ = tp, f = t(;(~, ~), 

The quotient system E / H  is giwm by 

O + (~ - ,,, + i)~ ,O~ + ( i  + O, , ,d ;e~,  = 0, 

594 

j = t-lrn(~). 

0 ~  

/ m(~) = ~'~ d~. 

m(~) = . /  p'g~ d,y. 
- - 0 0  

H(X2 - X3 + X|): .1 = (t exit (x), tp, t -  t.f). The, sohttion is invariant with respect to simultaneous 

(2.2) 

For c~ = 0, we have ,1 = (t, x - ip ,  x f ) .  The solution is invariant with rest)ect to (lilation of x, p and f .  



4. H(X3) ;  J = (t-ix,  p, f) .  The solution is invariant with respect to uniform dilation of variables t 
and x and describes a class of self-similar motions of the medium. The solution is written as ~ = t - Ix  and 

C f = f(~,p). T h e  quotient system E / H  is given by 

(p - j - ~)f~ + pjJp  = O, j ( ~ ) =  / p f  dp. (2.3) 

- -OO 

5. H(X1 + X~); J = (x - t , p , f ) .  The solution is invariant with respect to simultaneous translation 
in t and x and describes traveling waves. The solution is written as ~ = x - t and f = f(~,p). The quotient 

system E / H  is given by 
OG 

( p - j - 1 ) J ' ~ + p j ~ f p = O ,  j ( ~ ) =  / p f d p .  (2.4) 
] 

6. H(X2) ;  J = (t,p, f) .  The  solution is invariant with respect to translation along the x axis. The 
solution is wr i t t en  as f = f ( t ,p)  and j = j(t). Tim quotient system E/H is given by 

ft  = 0. (2.5) 

7. H(XL) ;  J = (x, A,p, f) .  The  solution is invariant with respect to translation in time. The solution 
is writ ten a,s f -- f(:r, p). The  quotient  system E / H  is given by 

o o  

(p - j)f~ + pj~fp = O, j(x) = / pf  dp. (2.6) 
- - O G  

3. I n v a r i a n t  S o l u t i o n s .  Below we i)resent results of integzation of the quotient systems and analyze 

the solutions obtained. 
The  trajectories of bubble  motion in tile I)hase sI)ace are obtained from tile system of ordilmry differ- 

ential equat ions  

dx dp 
- -  = p - j ,  - -  = p j . ~ .  (3.1) 
dt dt 

Tile linear stabil i ty of the flows is studied using the characteristic equation 
o o  

I fP dp = 0 (3.2) X ( k ) = l - n + ( j + k ) " .  t ) - J - k  

and the hyperboliei ty  conditions 

A arg g~: (p) = O, "~+ (p) r O. 

= 1 - x )  + p" p') dp' • 
�9 O F  p '  - p Op 

- - 0 0  

(the increment  of the argmnent  is calculated with variation in p from - o c  to ~ at fixed t and x), which are 
obtained in [5] by the method l)roposed in [8]. The hyt)erl)olicity conditions guarantee that Eq. (3.2) has no 
('omI)lex characteristic roots, and these conditions are necessary [br flow stability. 

~,Ve no te  that  for the part icular  class of solutions with n = 1. Eq. (1.1) reduces to equations that  
describe plane-t)aralM rotat ional  flows of an inviscid homogeneous fluid in a long channel. The characteristic 
properties of  this system are analyzed in [9], where some exact solutions are also given. 

Submodel (2.5)�9 Integrat ion of the quotient system (2.5) yields a class of steady, st)atially homogeneous 

solutions f = f(p). 
Submodels (2.4) and (2.6). Integration of the quotient systems (2.4) and (2.6) yields the inequalities 
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o 0  

~(p2  _ 2( j  + a)p), j ( x  - at) = / p(~ dp f 
1 

(a = 1 and  0, respect ively) .  Up  to  a change  of nota t ion,  these vahles of l )arameter  a completely describe the 

class of  invar iant  solutions of  the  fo rm f = f ( x  - Dt ,  p), where D = const ( traveling waves). These solutions 

are considered in [5], where formulas  describing a traveling wave propagat ing wi th  constant  velocity D over 

a spatial ly h o m o g e n e o u s  b a c k g r o u n d  are  given�9 

F r e e  M o t i o n  o f  B u b b l e s  i n  a n  I n v i s c i d  I n c o m p r e s s i b l e  F l u i d .  Submodel (2.2).  We consider the 

c~se of  rn = 1. T h e  character is t ic  s y s t e m  of equat ions (2.2) has the first integrals ~ - In ~ and ~ .  Therefore,  

a solution o f  t h e  quot ien t  sys t em can  be  wri t ten as 

= ~ - ~ A ( ~  - In ~), f A(~ - lu ~) d~ = 1 
] 

(A is an a r b i t r a r y  function)�9 We cons t ruc t  a solution in a domain - c o  < ~ < ~ ,  exp (b) < ~ < cc (b = const).  

To do this, as  A we take any nonnega t ive  differentiable fimction defined in the  interval I -b ,  co), which, 

wi th  its deriw~tive, vanishes at  the  point - b  and at infinity and satisfies the  equali ty / A(,k) dA = 1. together  
] 

-b 
Outside the  interval  [ -b ,  e~). we con t inue  the fimction A(A) by the zero function. As a result, in the domain  

b < In t + x < oo, we ob ta in  the  so lu t ion  of  Eq. (1.1) 

f ( t , x , p ) = p - l A ( t p - . r - l n t ) ,  0 < q < p < o c ,  f ( t . x . p )  = 0, - o o < p < ~ q ,  

(3.3) 
/ A ( t p _  - x - In t )dp  = t - I  (q = ( - b +  In t + : c ) t - l ) .  

q 

For solut ions o f  the  class (3.3), j = t - I  and the f imction n( t ,x)  a t ta ins  a m a x i n m m  value on the curve 

b - In t + x and  decreases mono ton ica l ly  with increase in t and x. 
In  the  R u s s o - S m e r e k a  kinet ic  model ,  the force exerted on a bubble sys t em is proport ional  to the 

gradient  of  the  first momen t  of  the  d is t r ibut ion function.  In this case, j x  = 0 for all times, and, therefore, 

solutions (3.3) descr ibe  free m o t i o n  of  bubbles in an invisckt incompressible fluid. We note  that  the M)sence 

of the threes is re la ted  to the special  self-consistent dis t r ibut ion of the bubbles in space. From Eqs. (3.1), we 

find tha t  the  t ra jec tor ies  of the bubbles  are given by the  formulas 

x = tpo - In t - x0, P = P0 (3.4) 

(:r0 and P0 are  cons tants ) .  
We cons ider  an example  of  a solut ion of the class (3.3). Let 

A(A) = ~2ct cos,~(a,~), a E - - -  ; 

otherwise A(A) = 0 (r~ is a posi t ive constant) .  Then,  in the domain ~ / (2a )  < In t + x < oc. we obtain  a 

solution wi th  the  finite d is t r ibu t ion  funct ion 

f ( t ,  :r, p) = 2__~ cos2(o( t  p _ In t - x)) (3�9 
,'rp 

if" - r r / ( 2 ( , )  + l n t  + x ~< tp <<. 7r/(2(~:) + In t  + :r: otherwise f - 0. Let. for defiifiteness. r = 0�9 

F igure  1 shows bubble  d i s t r ibu t ions  in space, at fixed times. It billows f rom Eqs. (3.5) and Fig. 1 tha t  

in a b o u n d e d  range  of  x, the s u p p o r t  of  the dis t r ibut ion flmction is cont rac ted  in the  variable p with time. 

At large t, t he  func t ion  f # 0 on ly  in a small interwd p e (0 , -  ~) [~ = ( ~ / ( 2 a )  + l n t  + x) t  - t  and goes to 

zero as t ~ oc]. Therefore,  in the  process  of flow evolution, only bubbles whose momen ta  are nearly zero 

remain in the  observa t ion  domain .  To explain this fact, we consider the bubble  t rajectories  (3.4). It  follows 
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t = l O  . . . . . . . . .  ~ _ ~ -  

i 
I , 

i . . . . . .  i . i 
: , f  

15 " ~ ) ~  j .--y-- 3 ~ , . : : : . + .  - - 3 

o o 

Fig. 1 

t =0 .1  
hnz  + 

R e z  + 

Fig. '2 

from Eqs. (3.4) t ha t ,  s tart ing f rom a certain time, every bubble moves in the direction of increasing vahms 

of x since p ---- P0 > 0 ( f  ~- 0 for p < 0) amt x ~ pot., but tile bubbles differ in velocity. Bubbles with large 
momen ta  move  faster (and leave the observation domain faster) than bubbles with small momenta.  Thus, 

this solut ion describes the i)rocess of  free "scattering" of bubbles in an inviscid incompressible fluid. We 
note, tha t  in this case, the analogue of tim hydrodynainic density n (t, :r) < 1 and decreases with time (this is 

verified by straigtl tforward calculations ). 
We now s tudy tile linear s tabi l i ty  of the flow (3.5) using the characteristic equation, i.e, the hyperbolic- 

ity condit ions,  which guarantee tha t  Eq. (3.2) has no complex roots for a given solution. Figure 2 shows plots 
of the f lmct ion X+(p) for p varied from - r  to +oe  at  times f = 0.1 and 10 at the point x = wa - I  ~ 22.439; 

the values of  Re %+ are plot ted on the abscissa axis, and the values of hn  X + are on the ordinate m'ds. The 

plots of the  flmctions k+(p) and X-(P) are symmetr ic  about the abscissa axis. I t  follows from Fig. 2 that,  
at  t = 0.1, the  increment of the argument  of the flmctions y•  is zero, and the hyperbolicity conditions 

are satisfied. Thereibre, in a cer ta in  neighborhood of the point z = ~ a  - l ,  the flow is stable in the linear 
approx ima t ion  at  f ~ 0.1. At f = 10 (Fig. 2), A arg u ---- 27r and A arg y - ( p )  = -2w. In this case, tile 

hyperbol ic i ty  conditions are violated (there are complex characteristic roots) and the flow is unstable. Thus, 
we have shown tha t  for certain initial data, instability can appear in a free motion of the bubbles. 

F l o w s  o f  a R a r e f i e d  B u b b l y  F lu id  w i t h  a Cr i t i c a l  Laye r .  Below, we present results concerning 

self-similar solutions of the Russo-Smere l~  equation. 
Submodcl (2.3). We consider particular solutions of tile quotient system (2.3) fbr which m = a~ (r~ is 

an a rb i t r a ry  constant) .  Let a # - 1  and 0 [for cr = - 1 ,  we obtain solutions for which n = 1, and fbr o- = 0, 

solutions have  the form f = f(p)] .  IntegTation of (2.3) yields 

-.2 , - "~ ~=  f p,,dp, (3.6) f = I)(C), C = I~11 (1 - 2 3 ' ) p  ' - '~ 1 (1 3')I' Y 1 - 2"/ 
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Fig. 3 

where 7 = or(1 + a)  - t .  Tile distr ibution flmction is constant along tile curves C = const. Let 7 = 2 (the 
other cruses are similar but  the mathematical  calculations are more complicated). Then. according to (3.6), 
the invariant C' has the form 

C = Ipl-l(3p + c)2. (3.7) 

Figure 3 shows the characteristics (curves C = const) on the l)lane (p, ~). ~Ve consider the following 
Cauchy problem: 

DO 

/ f(~o. P) = fo(P). 7( 1 -- 27)-l~0 = Pfo(P) dp. (3.8) 

Let us construct  a solution similar to a simple wave in the domain -.z~ < p < oc, ,% < ~ < (l < 0. 
Conditions (3.8) guarantee the continuous matching of the simple wave with the specified steady, spatially 
homogeneous solution fo(P). As one can see in Fig. 3, tbr ~ > Co, the solution of the Cauchy problem is 
uniquely de termined from the initial da ta  in tile domains Q j, Q2.9.~. and ~25. In the domain ~a, botmded by 
the bold-fiwe curve C = C0 = -12~0 and the straight line ~ = ~t, the solution is determined using additiomd 
equations. We note  tha t  tt~e Cauchy problem (3.8) is ill-posed for ~ < ~0 because the function fo(P) cannot be 
specified arbi t rar i ly  ( the characteristics intersect the curve with prescribed Cauehy conditions at two points). 

Let us find a solution ill the domains 

~ = {(p.  ~): ,~o _< ~ < ~ ,  - ~  < p <~ (2~o - ,~ - 2 ~ - ,~o,~)/3}.  

Q'2 = {(P.~): ~o ~< ~ <~l ,  (2~o - , ~ + 2  ' ~  - ~o~)/3 <~p <  0}. 

For that ,  we calculate tile fllnction r  (C >/Co) at ~ = ~o (we denote it by 4)ol for p ~< ~o/3 and 'hoe for 
p >~ ~o/3). From Eqs. (3.7) and (3.8), we obtain 

' I ,m(C) = f o ( ( - 6 s  - C - v /12~oC + C i )/18), 'I 'o2(C) = .fo((-6~o - C + v/12,%C + C'-' )/18). 

Using the known flmctions (b0t and cI~02, from (3.6) and (3.7) we obtain the following solution in tile (tolnains 

f~-I and P-'2: 

9 c 2  c 0 c f (p ,~)  ' b l ( - ( 3 p + , , ) ' / P ) . - o c  < p ~< (2,~o - ~ - .  - , ,  , , ) /3 .  

f (p ,~)  = ~2( - (3p+~)2 /p ) ,  (2~0 - ~ + 2  c'' - ~0~)/3 ~< p ~< 0. 

Then, we obtain tile solution in the domains 

1 2 4 = { ( p , ~ ) : ~ 0 ~ < ~ < ~ , 0 ~ < p ~ < - ~ / 3 } ,  F t s = { ( p , ~ ) : , % ~ < ~ < ~ t , - ~ / 3 ~ < p < o c } .  
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For 0 ~< p ~< -~0 /3  and p/> -~0/3 on the line ~ = ~0, function (I)(C) (0 <~ C < oc) is given by 

(b0a(C) = f0 ( ( -6 (o  + C - x / - 1 2 ( o C  + C e ) /18) and  r = fo ( ( -6 s  + C + ~/-12~0C + C 2 )/18), 
respectively. These formulas allow one to determine the  simple wave in the domains f~4 and f~a: 

f(p,~) = (ba((3p + ~)2/p), 0 ~< p ~< - ~ / 3 ,  f(p,~) = ,I,,~((3p + 5)2/p), - U 3  ~< p < co. 

We now construct a solution in the domain 

a:~ = {(p,~): ~o ~< ~ < ~,, (2~o - ~ -  2V/~o2 -- ~o~)/3 ~< p <~ (2~o - ~ + 2 V /~  CoC - ~  , ) / 3 } .  

V~e transform the relation 
(x )  

_ 2._~ = / pf (~ ,  p) dp (3.9) 
3 . 

- - 0 0  

to an integral equation for tile fimction (b(C) in the interval  (Cl = -1211 < C < Co = -12~0). For that, in 
cacti domain where the simple wave is already known, we change in (3.9) the variable of integration p to C. 
Let s -- -12~. In the domain ~1, the fimction f and the  variable p can be expressed in terms of s and C: 

/ = @ x ( C ) ,  p = ( s / 2 - C - ' ~ " C v f C - s ) / 1 8 ,  C 0 < C < o e .  

Therefore, 
a [  Co 

(2C - s) 2 "~ 

- -OO C o  

where a l = (2~0 - ~ - 2 ~ -  ~0~ )/3. Integrals in the o ther  donmins are transformed similarly. Finally, for 
the unknown fimction (b in the domain 12a we obtain the  following integral equation of the second kind: 

c .  

. f  I((C. s)(I)(C)dC = F(s),  (3.10) 

s 

whe.re 

I , '=  v ~ V - d -  ~ + 
( 2 C - s )  2 

a V - d ~ '  

c o  c o  1/ 1/ 
F(s )  : - 9 s  + (s - 2C - IV(C, sl)(bl  (C )  d C -  -~ (s - 2C + 1,2(C. s))(I)2(C) dC 

( .. c .  

c o  c o  1/ 
2. (.~ + 2 C -  V(C,.~)),~(C)dC + -~ + 2C + V(C,s)),bs(C)dC. 

o o 

( 2 C  + s)  2 
v =  v ~ . ~  + 

4 v ~  cdC-~.~ 
\Ve now show that  (3.10) can 1)e transformed to an equation of the second kind. We separate tile 

singularity in the kernel of the integral operator (3.10): 

4cr + Q(c..~). Q(c..~) = v ~ , ~  + (2cav_Cd_C_ . ~ -  '~)~ - .~7-~ 

The kernel Q(C, .s) has no singularities in tile integration domain. Therefore, Eq. (3.10) can be rewritten as 

c.  co 

,/-c - . ,  dC = C(~), C(.,) = F(s) - d C  . 

8 8 
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Fig. 4 

Tile function G(s) is continuously differentiable and wmishes at the point .~ = Co. Inversion of Abel's integral 
operator (3.11) allows one to obtain the following integral equation of the second kind [br the function (I,(C): 

,I)(C) = __1/-- a ' ( s ) d . s .  (3.12) 
7r ~ v / s  - C 

c 

Equation (3.12) can be soh-ed by the iteration method.  If the fimetion 4)(C) is obtained, the self-similar 
solution is determined. 

IntegTating (1.1) over the varial)le p, we find that  the fimction o(t, x) satisfies the differential equation 

, , ,  + ( ( 1  - = o .  

For the class of simple waves, it has the form n' + 2(1 - n ) / (  = 0. Solving this equation, we obtain 

/ n ( ~ ) = l - ( I - n o )  ~ , n 0 =  fo(p) dp. (3.13) 
%0 

-,Do 

An analysis of (3.13) shows that in a siInt)le wave, the (tensity n(~) increases and,  in the limit, it reaches 
unity ms 1~[ decreases to zero. 

In the w~riables t, ( ,  and p, Eqs. (3.1) are given by 

d c 3p - ~ ell) 2p 
d'-t- = 3t " dt 3t (t > 0) (3.14) 

and define the trajectories of the Imbbles relative to a reference fi'ame moving with the simple wave. In- 

tegrating Eq. (3.14), we obtain the trajectories ( = -3at -2/:~ + bt -I/3 and p = at -2/:~, where a and b are 

arl)itrary constants. \Ve note that C = (3p + ~)2/ [p[  = const is an integral of system (3.14). Therefore, we 

shall use Fig. 3 for analysis of the trajectories. The quant i ty  p - ~/3 is negative in the domain [)-l. positive 
in the domains ~)~'2, ~4, and O,n, and elmnges sign from negative to l)ositive when it crosses the straight line 
connecting the points (~0/3, ~0) and (0, 0) on the plane (p, ~). The solution const ructed describes a flow with 
a critical layer since on the curve ~ = 3p, the particle velocity coincktes with the wave velocity. Bubbles 
whose relative velocity changes sign at a certain point of  the trajectory pene t r a t e  through the front ( = ~, 
(~0 ~< ~. < ~l) into the simple wave do,nain Q3- After tha t ,  these bubbles re tu rn  to  the front ~ = ~. and l ea~  
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the domain ~'~3" Bubble trajectories for the simple wave are shown in Fig. 4 in the space of the wxriables (t, 
~, p). In Fig. 4, the projections of curves 1 and 2 on the plane (p, ~) are in the domains ~ t  and ~5, and the 
projections of ttm curw',s 3 and 4 (which have turning points) cross the domains ~l ,  ~t3, and Ft2. Thus, these 
self-similar solutions describe the penetration of lmbbles in the unperturbed region through which the simple 
wave propagates.  

Submodel (2.1). We conskler Eq. (I.2) for L~ = - 1 / 2 .  In tills case, tile solution and tile quotient  system 
E/H are wri t ten  as 

= :r/v~. !z = pv~, f = VTd,((, ~): (3.15) 

't/+ ' l' d' / '~ (3 .16)  - -~ ~ . ~  . -" g + ( r  0r =0, t(~)= cuds+ 2 

We note that  the characteristic system for the first e(luation in (3.16) hCus the integral 

C = ~'-' - 2~l(~). (3.17) 

This allows one to find ano},tler integral and write '4, in the form 

( 1 /  1 d r ) .  (3.18) r = + (c )  e.,,p :F ~ , , / l%-)  + C 
E,u 

In (3.18), we choose the minus if i; - l(~) > 0 and the plus if c 2 - l(~) < 0. The second equat ion of (3.16), 
written as 

( l ( ~ )  c o s h ( l  1 dr) 
-12(~) 6) 

/ /  

6~ 

is use<t to determine +(C). 
C In ttle interwd [~0, ,,t], we define an arbitrary continuously differentiable, mmnegative, monotonically 

decreasing function l(~). Figure 5 shows the curves C = c o n s t  on the plane (p, ~). hi this case, l(~) = exp (-,~), 
(0 = 0, and ,~l = 2. For another choice of l(~), Fig. 5 renmins qualitatively the sanle. In tile domains 
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the integral C takes values from - l~  to infinity, and in the domain 

~:~ = {(~, +): c ,o  ~ ~ ~ , c , ,  ~(~) - ~ z ~ ( ~ )  - ~ < ~ < t,(~) + ~/ ,~(~)  - ~} 

it takes values from - l l  2) to - l~ [10 = l(~0) and l, = / ( ~ ) ] .  
On the half-line [-l~, oc), we define the fimction (I) = 'I),(C) such that  Eq. (3.19) is satisfied at  the 

t)oint ~ = ~ .  As one can see in Fig. 5, values of the fimction (I)(C) are determined from the known function 
(I),(C) in the domains  f~l and ~.~ and are not determined in the domain ~3. To construct a solut ion in the 
domain ~3, it is necessary to determine the fimction q)(C) in the interval [ - lg , -12) .  To do this, we t ransform 

Eq. (3.19): 
-z~ 

f ( 1 cosh(q(l.C))-sinh(q(l,C)))(~(C)dC 
7ff--d + 

_l ~ 

= l ((1) f ( 1 cosh(q(l,C)) -sinh(q(l,C)))(I~,(C)dC = F(l), (3.20) 
2 x/l "2 + C 

where 

i f ('(0 
q(t. c)  = 2 . J  v/C + c 

d( 

/o 

is a continuous fimction of the variables l and C. 
\Ve seI)arate the singularity in the kernel of the integral operator (3.20) and introduce the notation 

_-- _l  2. ') .) s .~l = --l[, .so = --15, an(t F'(.~) = F(1). Thus, we obtain the equation 

"~/ (I~-(C) dc=G(s) = .1 IF(s) 
. ~ -  .~ v~Z;cosh(q(V~..,)) 
8 

8t 
- . / (  ~ [('~176 . (3.21) 

8 
The differentiable function G(s) is defined on the interval [so, si]. We invert Abel's integral opera to r  (3.21): 

81 
(~)(C) = i (  G ( ' q l ) ~  ~ - - - 'C  - .  / GI('~) d,~ ~ ,' . (3.22) 

c 
As a result, we have obtained the integral equation of tile second kind (3.22) for the funct ion (I)(C). 

Equation (3.22) is uniquely solvable by the successive ai)proximation nmthod. We Irate that  G(s i )  = 0 
because Eq. (3.19) is satisfied at the point ( = ~1. If the fimction (I)(C) is known. E(ls. (3.15), (3.17), and 
(3.18) define an invariant sohltion of Eq. (1.1). 

We write Eqs. (3.1), which define the 1)article trajectories, in variables ~ and ~: 

d~ ~ - t,(~) d~ l '(~)~ 

dt t dt t 
The relative velocity of the bubbles changes sign in the donmin ~3 when the quantity ~ - l(~) vanishes. 
Thereibre, this invariant solution describes flows with a critical layer. 
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